欢迎您光临五金加工厂,如有问题请及时联系我们。

安规电容的作用是什么?安规电容的作用和工作原理?

作者:五金加工
文章来源:本站

  安规电容的作用是什么?

  安规电容,它可分为X电容和Y电容,用于电容器失效后,不会导致电击,及危害人身安全,安规电容通常只用于抗干扰电路中的滤波作用。安规电容和普通电容的放电不一样,普通电容在外部电源断开后电荷会保留很长时间,如果用手触摸就会被电到,而安规电容则没这个问题。处于安全考虑和EMC考虑,一般在电源入口加上安规电容。在交流电源输入端,一般需要增加3个安全电容来抑制EMI传导干扰。它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用。根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。(L=Line, N=Neutral, G=Ground)X电容底下又分为X1, X2, X3,主要差别在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差别在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压 n/a4. Y4耐高压大于2.5 kV

  安规电容的作用和工作原理?

  安规电容是指电容器失效后,不会导致电击,不危及人身安全的安全电容器。 这个定义不痛不痒的,估计看了也记不住。

  现实中主要就是指X电容和Y电容了,主要用在开关电源之中。 其重要的特点就是安全,这也是区别于其它高压电容的最主要的特点。

  安规电容的作用安规电容是指电容器失效后,不会导致电击,不危及人身安全的安全电容器。----这是安规电容的定义。 所谓存在即道理。 安规起到电源滤波作用,分别对共模、差模工扰起滤波作用,如果没有这些电容,可能产品会出EMC方面的问题,无法通过相关认证。

  安规电容是指电容器失效后,不会导致电击,不危及人身安全的安全电容器。安规电容通常只用于抗干扰电路中的滤波作用。它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模干扰起滤波作用。

  出于安全考虑和EMC考虑,一般在电源入口建议加上安规电容。

  安规电容的放电和普通电容不一样,普通电容在外部电源断开后电荷会保留很长时间,如果用手触摸就会被电到,而安规电容则没这个问题。在交流电源输入端,一般需要增加3个安全电容来抑制EMI传导干扰。

  安规电容的工作原理

  安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全。

  它包括X电容各Y电容两种类型,x电容是跨接在电力线两线(L-N)之间的电容,一般选用金属薄膜电容;Y电容是分别跨接在电力线两线和地之间(L-E,N-E)的电容,一般是成对出现。基于漏电流的限制,Y电容值不能太大,一般X电容是uF级,Y电容是nF级。X电容抑制差模干扰,Y电容抑制共模干扰。

  安规电容工作原理:当压力直接作用在测量膜片的表面,使膜片产生微小的形变,测量膜片上的高精度电路将这个微小的形变变换成为与压力成正比的高度线性,与激历电压也成正比的电压信号。

  安规电容的放电和普通电容不一样,普通电容在外部电源断开后电荷会保留很长时间,如果用手触摸就会被电到,而安规电容则没这个问题。出于安全考虑和EMC考虑,一般在电源入口建议加上安规电容。在交流电源输入端,一般需要增加3个安全电容来抑制EMI传导干扰。它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模干扰起滤波作用。

  安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)

  X1 》2.5kV ≤4.0kV Ⅲ

  X2 ≤2.5kV Ⅱ

  X3 ≤1.2kV ——

  安规电容安全等级绝缘类型额定电压范围

  Y1 双重绝缘或加强绝缘≥ 250V

  Y2 基本绝缘或附加绝缘≥150V ≤250V

  Y3 基本绝缘或附加绝缘≥150V ≤250V

  Y4 基本绝缘或附加绝缘《150V

  Y 电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC 性能影响的目的。G***151 规定Y 电容的容量应不大于0.1uF。Y 电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y 电容的耐压性能对保护人身安全具有重要意义。

  

安规电容的作用是什么?安规电容的作用和工作原理?

  

安规电容的作用是什么?安规电容的作用和工作原理?

  

安规电容的作用是什么?安规电容的作用和工作原理?

  

安规电容的作用是什么?安规电容的作用和工作原理?

来源:文章来源于网络,如有侵权请联系我们删除。本文由五金加工编辑,欢迎分享本文,转载请保留出处和链接!